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Cell-based therapy in lung regenerative medicine
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Abstract

Chronic lung diseases are becoming a leading cause of death worldwide. There are few effective treatments for
those patients and less choices to prevent the exacerbation or even reverse the progress of the diseases. Over the
past decade, cell-based therapies using stem cells to regenerate lung tissue have experienced a rapid growth in a
variety of animal models for distinct lung diseases. This novel approach offers great promise for the treatment of
several devastating and incurable lung diseases, including emphysema, idiopathic pulmonary fibrosis, pulmonary
hypertension, and the acute respiratory distress syndrome. In this review, we provide a concise summary of the
current knowledge on the attributes of endogenous lung epithelial stem/progenitor cells (EpiSPCs), mesenchymal
stem cells (MSCs) and endothelial progenitor cells (EPCs) in both animal models and translational studies. We also
describe the promise and challenges of tissue bioengineering in lung regenerative medicine. The therapeutic
potential of MSCs is further discussed in IPF and chronic obstructive pulmonary diseases (COPD).
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Introduction
The lung disease has become one of the major public
health issues across the world with the increased human
activities, environmental changes, air pollution, smoking,
and various pathogens like influenza. The World Health
Organization ranks lung diseases second in epidemio-
logy, mortality and cost and predicts that about one fifth
deaths will be attributed to lung diseases by 2020 [1].
Currently, there are no therapeutic ways to inhibit or re-
verse the pathobiology of many destructive lung diseases.
These include chronic obstructive pulmonary disease
(COPD) which is the leading cause of death in pulmo-
nary diseases worldwide, idiopathic pulmonary fibrosis
(IPF), cystic fibrosis, pulmonary hypertension (PH) and
the acute respiratory distress syndrome (ARDS) [2]. Lung
transplantation becomes the only choice for many pa-
tients. However, many patients die in the waiting period
due to the shortage of available donor lungs. Furthermore,
the average of survival time post-transplantation for recip-
ients is around 5–6 years [3]. Long-term graft dysfunction
and bronchiolitis obliterans syndrome (BOS) are still the
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major obstacles to be overcome post transplantation [4].
Thus, new and innovative options are in urgent need for
those patients.
Recent progresses in stem cell research allow investi-

gators to study cell-based therapies in the treatment of
lung diseases. Stem cells are a population of undifferen-
tiated cells characterized by three main functions: 1)
ability to divide asymmetrically (called self-renew); 2)
clonality generally arising from a single cell; and 3) po-
tency to differentiate into different type of cells or tissues
[5]. Pluripotent stem cells have the ability to generate
all lineages of body and include embryonic stem (ES)
cells and induced pluripotent stem (iPS) cells [6]. ES
cells are first derived from the inner cell mass at the
blastocyst-stage embryo. A good example of iPS is the
Yamanaka experiment in which mouse and human fi-
broblasts were transfected with four transcription fac-
tors (OCT3/4, SOX2, c-MYC, KLF4) to reprogram the
somatic cells into iPS [7]. Lung stem cell research slightly
lags behind studies on other organs. There is relatively
limited knowledge about the endogenous progenitor cells
of human lung tissue until recently. Moodley and col-
leagues performed a xenograft implantation in which they
injected human amnion epithelial cells parenterally into
bleomycin-treated severe combined immunodeficiency
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(SCID) mice as pulmonary fibrosis model and demonstra-
ted reduced inflammation and fibrosis [8]. The injected
cells also developed an alveolar epithelial phenotype with
lamellar body formation and expression of surfactants A
and D. More interesting, Kajstura and coworkers recently
identified stem cells from adult human lung tissue using
the stem cell antigen marker c-kit [9]. After being ad-
ministrated into an injured mouse lung, the cells de-
monstrated pluripotent capability of generating human
bronchioles, alveoli, and pulmonary vessels within the
damaged organ. Although some disputes exist on tissue-
specific adult human lung stem cells in Kajstura study
[10,11], these evidences collectively suggest that isolated
adult lung stem cells are potentially of great clinical im-
portance for cell-based therapies in pulmonary diseases.
This review will briefly highlight the recent progresses

on mouse lung stem cell research and its applications in
some clinical trials for specific lung diseases such as
IPF and COPD. We will mainly discuss the endogenous
lung stem cells named as epithelial stem/progenitor cells
(EpiSPCs) in different anatomic locations, mesenchy-
mal stem cells (MSCs), and endothelial progenitor cells
(EPCs). In addition, we will briefly discuss novel bioengin-
eering approaches to generate implantable lung tissues or
organs ex vivo and in vivo. Stem cells from different ori-
gins may be repopulated into the decellularized or bioen-
gineered scaffold to create new functional organs.

Lung stem cells: classification, origin, biomarkers, and
function
Recent studies mainly in mice have identified several
adult stem cell lines in distinct anatomic locations of
lung [12-14]. There might be some equivocal terms to
define each cell line. In general, these diverse cell lines
can be called lung endogenous stem/progenitor cells. Ac-
cording to the ability to differentiate, all stem cells can be
categorized into 5 groups: totipotent, pluripotent, multi-
potent, oligopotent and unipotent [15]. Most lung en-
dogenous stem/progenitor cells belong to multipotent or
oligopotent cells. Alveolar epithelial cells (AECs) type II
are unipotent since they only differentiate into type I cells
[16]. Here we will mainly focus on three extensively stu-
died populations of lung adult stem/progenitor cells in
terms of their origin, biomarkers, and function mainly re-
stricted to animal models.

Epithelial stem/progenitor cells (EpiSPCs)
Region-specific endogenous EpiSPCs in the adult lung has
been extensively reviewed recently [2,14,17,18]. Briefly,
different lineages of EpiSPCs reside in the proximal tra-
chea, bronchi, bronchioles, and alveoli regions to maintain
local epithelial homeostasis and repair. Basal cells in
tracheobronchial region express transcription factors
Trp63, cytokeratin Krt5, and surface receptor Ngfr [19].
Two main types of secretary cells along the proximal-
distal axis include the secretoglobin family 1A member
1-positive clara cells (Scgb1a1pos, also known as CCSP or
CC10) and mucus/goblet cells Muc5ACpos and Muc5Bpos

[20]. Bronchioalveolar stem cells (BASCs) at the bron-
chioalveolar duct junction of terminal bronchioles, also
termed double-positive cells, express CCSP and surfactant
protein C [21]. More recently, two independent groups
utilized SFTPC-CreER system to track AEC type II and
demonstrated that type II cells give rise to AEC type I
[22,23]. The α6β4 positive AECs express little or none of
CC10 or pro-SPC. Barkauauskas and colleagues confirmed
that SPCpos AECs type II self-renew and maintain differ-
ential potential over one year [16]. PDGFRαpos lung stro-
mal cells or lopofibroblasts may contribute to a stem cell
niche of Type II cells to facilitate their growth and differ-
entiation, suggesting that direct contact between AECs
and mesenchymal cells or a paracrine effect is necessary
to activate or initiate cell proliferation and differentiation.
One study by McQualter and colleagues supports the idea
in which they isolated EpiSPC expressing EpCAM, CD24,
CD45, CD31, and Sca-1 from enzymatically digested adult
mouse lung tissue [24,25]. Either co-culture this popula-
tion with EpCAMneg Sca-1Pos lung mesenchymal cells or
directly adding soluble fibroblast growth factor (FGF)-10
and hepatocyte growth factor (HGF) promoted clonal pro-
liferation and self-renewal.
Although there are many endogenous epithelial pro-

genitor cell lineages in the adult lung, bone-marrow de-
rived progenitor cells represent a distinct origin and
have been shown to migrate to the airway epithelium
and contribute to tissue repair in lung disease models.
Wong and colleagues identified a bone-marrow-derived
progenitor cells in mice and human that expressed CCSP
and hematopoietic marker CD45 and mesenchymal origin
(CD73, CD90, CD105) [26]. CSSP+ cells expressed basal
cell markers and surfactant protein A-D when cultured at
the air-liquid interface ex vivo. These cells homed to in-
jured airway in response to naphthalene-induced lung
damage. Moreover, in the sex-mismatched bone marrow
transplantation, Y chromosomes were found to be wide-
spread in type II cells in female recipient lung [27]. Taken
together, these observations strongly suggest that except
lung endogenous epithelial progenitor cells participating
in repair, bone marrow-derived progenitor cells may also
home to sites of injury and differentiate into epithelial
phenotype.

Mesenchymal stem cells (MSCs)
MSCs was first isolated from bone marrow and descri-
bed by Friedenst in 1968 as a plastic adherent fibrablast-
like appearance and distinct from haematopoietic stem
cells (HSCs) [28]. Thereafter, MSCs has been isolated
from many other tissues, including umbilical cord blood,
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placenta, adipose tissue, amniotic fluid, Wharton’s jelly
[29,30]. MSCs are multipotent and can differentiate into
cells of various tissues like bone, cartilage, muscle, liver,
and lung [13]. There is no consistent cell surface mar-
kers to isolate MSCs from different tissues, though the
Mesenchymal and Tissue Stem Cell International Com-
mittee has proposed minimal criteria to define human
MSCs [31]. Lineage tracing studies with gene fibroblast
growth factor (FGF)-10 have disclosed that at least two
distinct populations of MSCs residing at the trachea and
branching tip of the epithelium along the airway differ-
entiate into smooth muscle cells [32]. Further studies
demonstrated that MSCs can be enriched with cell sur-
face markers CD45neg CD31neg EpCAMneg Sca-1pos and
play an important role as the epithelial progenitor cell
niche to support their proliferation and differentiation
in vitro [24,33]. More interesting, Chow et al. defines
the lung MSCs in the conditional knock-out mice EC-
SOD−/− under the control of ABCG2 promoter as mul-
tipotent vascular precursors and finds that lung MSCs
differentiate into myofibroblast, endothelial and pericytes
in vitro [34]. Lama and colleagues successfully isolated
MSCs from the bronchoalveolar lavage of adult human
lung allografts [35]. These MSCs express common mes-
senchymal markers CD73, CD90, and CD105, but are ab-
sent of hematopoietic lineage markers CD14, CD34, and
CD45. They are capable of differentiating into adipocytes,
chondrocytes, and osteocytes. Although adult lung con-
tains some lineages of MSCs, more studies focus on the
BM-derived MSCs in human disease models. Gazdhar and
colleagues recently isolated a population of human hep-
atocyte growth factor (HGF)-expressing stem cells at fi-
brotic area in usual interstitial pneumonia patients. These
HGF-positive cells co-expressed MSC markers CD44,
CD29, CD105, CD90 and CXCR4 indicating bone-marrow
(BM) derived stem cell characteristic [36]. In order to
understand whether they have anti-fibrotic property, they
instilled BM-MSCs transfected with HGF into rat lung
7 days after bleomycin treatment and observed an atte-
nuated fibrosis. Although the exact mechanisms of how
MSCs contribute to beneficial effects against diseases are
not yet fully understood, a growing body of evidences sup-
ports a paracrine effect to repair injured cells. Human
MSCs condition media facilitates wound repair in human
type II cell lines A549 and primary human small airway
epithelial cells in vitro by producing secretome con-
taining proteins such as fibronectin, lumican, perios-
tin, and IGFBP7 [37]. Similar studies in cardiac fibrosis
shows MSCs condition media inhibited cardiac fibroblast
proliferation by up-regulated cell-cycle arresting genes
such as elastin, myocardin, DNA-damage inducible trans-
cripts [38,39]. The above properties make MSCs an attrac-
tive therapeutical reagent to treat many chronic diseases
in clinical trials as discussed later in this article.
Endothelial progenitor cells (EPCs)
Study on EPCs was first reported by Asahara and col-
leagues in 1997 by the discovery of HSCs capable of dif-
ferentiation into an endothelial phenotype [40]. EPCs
can be recruited from bone marrow to injured lung tis-
sue. Although the mechanisms are not fully understood,
the released cytokines hypoxia inducible factor (HIF)
and vascular endothelial growth factor (VEGF) may play
a role in the recruitment of EPCs to sites of hypoxia
from bone marrow [41]. When EPCs migrated into hyp-
oxic destinations, they have the capacity to differentiate
into endothelial cells and generate new blood vessels
[42]. The phenotypic identification of EPCs is currently
inconsistent because there is a lack of a unique combin-
ation of marker proteins to define EPCs. According to the
Duda protocol, EPCs can be isolated by FACS through a
population of CD31+/CD34bright/CD45dim/CD133+ [43]. A
general combination of shared markers for EPCs includes
stem cell marker CD133 (also known as AC133), endothe-
lial cell marker VEGFR2, as well as hematopoietic marker
CD34 [44]. Ribattihas et al. proposed a way to divide EPCs
into two different subpopulations, early (CD34+ CD31+

CD14+) and late (CD31+ CD144+ CD146+ CD105+ CD45-

CD14- CD115-) EPCs, with distinct cellular morphology,
growth pattern and abilities to secrete angiogenic factors
[45,46]. Currently, it is still unable to discriminate BM or
peripheral blood derived EPCs from lung resident EPCs.
This may prevent us from further understanding the con-
tribution of endogenous EPCs in lung vascular disease re-
pair and regeneration.
Large numbers of animal and clinical studies have been

performed to investigate the beneficial roles of EPCs
in lung diseases. Animal studies have shown that BM-
derived EPCs can home to site of ischemia, and newly
formed vessels were detected at ischemic locations [47].
For example, in animal models of monocrotaline (MCT)-
induced pulmonary hypertension (PH), transplantation of
BM-derived EPCs prevented PH and restored microvascu-
lar architecture and perfusion in rats and dogs [48,49].
However delayed administration of EPCs at 3 weeks post
MCT treatment partially prevented the increase in right
ventricular systolic pressure compared to a shorter time
point [48]. When the endothelial nitric oxide synthase
(eNOS) gene was transfected into EPCs as a vehicle, they
found that eNOS gene therapy significantly reversed an
established disease in this model. Acute lung injury (ALI)
and end stage ARDS are among the most common causes
of death in ICU. During the acute exudative stage, endo-
thelial cells can be detached from the pulmonary vessels
and thus appear in the peripheral blood circulation. EPCs
transplantation represents an innovative treatment option
for the de novo formation of blood vessels. Many clinical
studies focused on quantification of peripheral EPCs and
their correlations with disease outcomes. However, Suratt



Yang and Jia Regenerative Medicine Research 2014, 2:7 Page 4 of 7
http://www.regenmedres.com/content/2/1/7
and colleagues first studied the capacity of EPCs to replen-
ish lung cells indirectly by administration of allogeneic
HSCs [50]. They found that lung biopsies from female re-
cipients contain male donor-derived epithelial and endo-
thelial chimerism. Except these promising preclinical and
clinical studies, several early phase clinical trials on EPCs
transplantation were underway. One pilot trial by Wang
and colleagues showed that transplantation of autologous
EPCs into patients with idiopathic pulmonary arterial
hypertension significantly improved 6-minute walk cap-
acity and hemodynamic function without obvious adverse
effects [51]. More recently, a phase I clinical trial (Clinical-
Trials.gov Identifier: NCT00469027) of transplantation of
autologous EPCs transfected with eNOS gene to patients
with severe pulmonary arterial hypertension was com-
pleted. Safety concern was not noticed during the trial and
patients appeared well tolerated with the genetically engi-
neered EPC [2]. The complete results of the trial will be
released soon. Although recent studies indicate that both
circulating and lung residential EPCs facilitate tissue re-
pair and regeneration, more knowledge on optimal cell
preparation, storage, dosage, administration route and
time is strongly needed for future clinical application. Fi-
nally, a comprehensive assessment of EPCs can be re-
ferred to other reviews [13,44,52].

Tissue bioengineering
Tissue bioengineering is defined as the generation of
functional tissue for replacement of injured or patho-
logical tissue. Adult lung is architecturally complex as a
hierarchical model of homoeostasis, and is made up of
more than 40 distinct types of cells [53]. It is impractical
to directly build a functional whole lung organ with cur-
rent knowledge and technology. However, it is still feas-
ible to produce part of the upper, lower airway or the
alveolar tissue. In fact, significant progress has recently
been achieved using decellularized or synthetic scaffolds
to generate tracheal cartilage as well as tendon tissue in
diaphragm for clinical application [54,55]. Epithelial cells
and MSC-derived chondrocytes were implanted to the
decellularized donor trachea and restored the trachea
function in the recipient [56]. The generation of lower
airway and alveolar tissues is more challenging and res-
tricted to animal studies presently. Seeding somatic lung
progenitor cells onto synthetic polymer scaffold in vitro
or implanted in vivo promoted cell differentiation [57].
However, the in vivo transplantation caused an inflam-
matory response which disrupted lung development. A
recent pioneer work by Peterson and colleagues demon-
strated that a bioengineered lung achieved gas exchange
upon reimplantation in rats in vivo [58]. They first de-
cellularized the rat lung with detergents to remove all
immunogenic cells. Neonatal epithelial and vascular endo-
thelial cells were seeded into the corresponding anatomic
locations in the scaffold cultured in a bioreactor which
contained suitable cell growth media. After cultured for
several days, the engineered lungs were transplanted into
syngeneic rat for 45–120 minutes and recorded gas ex-
change. Taken together, these preclinical studies indicate a
bright future for bioengineered lung tissues in regenerative
medicine. However, a number of key challenges still need
to be resolved before initiating any clinical trial. These
mainly include the optimal origin of progenitor stem cells
(EpiSPCs, MSCs, EPCs, and/or other origins), extracel-
lular matrix components, potential immunogenicity, ideal
in vitro culture condition, and other implantation-related
dosage, order, route, function monitoring system [59,60].

Lung diseases with cell-based therapies
Idiopathic pulmonary fibrosis (IPF) is a fatal form of
pulmonary fibrosis disease characterized by extracellular
matrix deposition and scar tissue formation in the inter-
stitial lungs over time. The incidence of IPF is 13 to 20
cases per 100,000 people [61]. Typically the disease is
found in old adults and the median survival time is 3–5
years. The clinical presentation includes exertional dys-
pnea, cough, functional and exercise limitation, impaired
quality of life and risk for acute respiratory failure and
death. Unfortunately, there is no FDA approved treatment
or cure for IPF patients. Pirfenidone is an approved anti-
fibrotic and anti-inflammatory drug in Europe and Japan,
but still in clinical trials in North America [62,63]. Al-
though the etiology and pathogenesis of IPF is not fully
understood, the accumulation of activated myofibroblasts
is thought to be the source of interstitial collagens. There
are at least four proposed cellular origins of myofibro-
blasts including expansion of lung residential fibroblasts,
pericytes, recruitment of BM-derived fibrocytes, and al-
veolar epithelial cells undergoing epithelial-mesenchymal
transition (EMT) [64,65]. The circulating fibrocytes have
been proposed as a clinical marker to assess disease
progress [66].
Recently, stem cell therapy has emerged as a critical

treatment for many chronic lung diseases. Murine bleo-
mycin model is one of the best characterized animal
models for human IPF disease. With this model, several
groups have shown that administration of allogeneic BM-
MSCs reduced inflammation and collagen deposition
[67-69]. Other source of stem cells from placenta and
human umbilical cord also demonstrated reduced lung
tissue damage in the mouse bleomycin models [70,71].
More interesting, HSCs and MSCs have been genetically
manipulated as vehicles to deliver keratinocyte growth
factor (KGF) into the lung injured sites. HSCs provided
better protection from bleomycin-induced injury and pro-
moted endogenous type II AECs proliferation while MSCs
delivery just reduced collagen 1α1 mRNA [72]. These pre-
clinical studies in animal models strongly suggest that
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MSCs may be effective to treat human IPF. Furthermore,
allogeneic MSCs was safe and well tolerated to treat re-
fractory lupus erythematosus in a recent clinical trial [73].
Considering the potential beneficial role of MSCs in pre-
clinical models, a few clinical trials on IPF patients have
been approved. One recently completed Phase 1b trial by
Tzouvelekis and colleagues that was aimed to determine
the safety of endobronchial administration of autologous
adipose derived stromal cells-stromal vascular fraction to
IPF patients with mild to moderate severity demonstrates
an acceptable safety profile [74]. The treatment efficacy
will be evaluated in a future trial within a large population
of patients. In addition, FDA has approved another clinical
trial phase I study of autologous MSCs to treat IPF pa-
tients (initiated in March 2013, ClinicalTrials.gov Iden-
tifier: NCT01919827). This pilot trial will evaluate the
safety and feasibility of the endobronchial administration
of autologous BM-MSCs in patients with mild to mo-
derate IPF. This historical step illuminates the great po-
tentiality of cell-based therapy in respiratory regenerative
medicine. On the other hand, two separate groups found
that MSCs may play a role in the fibrogenic process of the
lung. Antoniou and colleagues reported an increased ex-
pression of the axis stromal-cell-derived factor-1 (SDF-1)/
CXCR4 in BM-MSCs from IPF patients, suggesting the
BM-MSCs may probably implicate in the pathogenesis
of IPF by recruiting MSCs to lung injury sites [75].
Walker and colleagues recently found that allografted-
derived local MSCs contain a profibrotic phenotype by
up-regulation of FOXF1, α-SMA, and collagen I in human
lung transplant recipients with BOS [76]. Overall, further
studies are still necessary to completely understand the
exact role of MSCs in the pathophysiology of IPF.
COPD is becoming a major devastating disease world-

wide. It is characterized by progressive poor airflow
caused by chronic small airway inflammation (known as
chronic bronchitis) and destruction of lung tissue (known
as emphysema). Cigarette smoke is the major risk factor
to induce the chronic inflammation and finally destructs
bronchial and alveolar epithelial cells [77]. Repairing the
destroyed lung structure with stem cell therapies becomes
an extremely attractive choice to treat COPD. MSC is
the most extensively studied candidates in clinical trials
not only for COPD, but also for other chronic diseases
[78-80]. One recently completed placebo-controlled, ran-
domized trial in 62 patients concluded that systemic ad-
ministration of MSCs was safe in moderate to severe
COPD patients [81]. However, they did not observe sig-
nificant improvement in lung function or quality of life
within the 2-year follow-up period after MSCs treatment,
except reduced level of C-reactive protein. Further studies
with MSCs or other populations of lung endogenous stem
cells in more patients are needed to evaluate in depth the
efficacy and safety of cell therapies in COPD patients.
Conclusion
Stem cell therapy appears to be a promising strategy to
attenuate or even reverse chronic lung diseases. Over
the past decade, numerous preclinical studies have de-
monstrated the capability of EpiSPCs, MSCs, and EPCs
from adult lung to facilitate tissue repair and regener-
ation in a number of pulmonary disease models. Many
completed or ongoing clinical trials have supported their
safety in the treatment of lung diseases. Another rapid
growing field of lung bioengineering offers further pro-
mise in lung regenerative medicine. However, there are
more unanswered questions in this field than what we
currently know. For example, how to achieve stem cell
stable growth and differentiation in vitro and in vivo?
Can we completely ignore the immune rejection? What
about the long-term possibility of tumorigenesis? Over-
all, stem cell therapy in lung regenerative medicine is
still in its infancy and many challenges remain scientists
to explore.
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