
Kang et al. Regenerative Medicine Research 2014, 2:2
http://www.regenmedres.com/content/2/1/2
REVIEW Open Access
Hypothalamic paraventricular nucleus activation
contributes to neurohumoral excitation in rats
with heart failure
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Abstract

Heart failure (HF) is a serious cardiovascular disease and is characterized by exaggerated sympathetic activity. In this
paper, we review these limited studies, with particular emphasis on examining the role of the paraventricular
nucleus (PVN) in the neurohumoral excitation in HF. The PVN is an important neuroendocrine and preautonomic
output nucleus, and is considered as the important central site for integration of sympathetic nerve activity.
Accumulating evidences demonstrate that a number of neurohumoral processes are involved in the pathophysiology
of HF, such as renin-angiotensin system (RAS), proinflammatory cytokines (PICs), neurotransmitters, and reactive oxygen
species (ROS). Recent studies about neurohumoral regulation indicate that angiotensin II type1 receptor (AT1-R) is the
important product mediated by cytoplasmic nuclear factor-kappa B (NF-κB) which is up-regulated along with elevated
PICs and angiotensin II (ANG II) in the PVN of HF rats. These findings suggest that the NF-κB mediates the cross-talk
between RAS and PICs in the PVN in HF. The further studies indicate that the interaction between AT1-R and NF-κB in
the PVN contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure, and
the superoxide activates NF-κB in the PVN and contributes to neurohumoral excitation. In conclusion, the neurohumoral
excitation in HF is based on the interaction of RAS, PICs, ROS, NF-κB and neurotransmitters in the PVN; and the activated
NF-κB in the PVN modulates the neurotransmitters and contributes to sympathoexcitation in rats with heart failure.
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Introduction
Heart failure (HF) secondary to left ventricular systolic
dysfunction is characterized by low cardiac output and
neurohumoral excitation (NHE). In the meantime, the
sympathoexcitation is considered as an important char-
acteristic of heart failure [1]. A growing number of ex-
perimental studies suggest that interventions at the
central nervous system (CNS) level are beneficial during
heart failure [2,3]. Animals with HF have neurochemical
abnormalities in the brain and profoundly affect sympa-
thetic drive in heart failure. The increase in sympathetic
nerve activity (SNA) in HF is due to an imbalance be-
tween inhibitory and excitatory mechanisms within
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specific areas in the CNS such as the paraventricular nu-
cleus (PVN) of the hypothalamus [4]. Some studies show
that the PVN is an important central site for integration
of sympathetic nerve activity [5,6] and is a significant
area in cardiovascular control [7,8]. The baseline sympa-
thetic outflow mediated by the PVN mainly depends on
the spontaneous activity of preautonomic neurons, and
via the axons project to the intermediolateral cell col-
umn (IML).
Previous studies show that angiotensin II (ANG II),

angiotensin II type 1 receptor (AT1-R), proinflammatory
cytokines (PICs), NAD(P)H oxidase, and nuclear factor-
kappa B (NF-κB) all appear to be potential targets for
PVN interventions that might substantially reduce the
adverse peripheral effects of sympathetic nerve activity
and neurohumoral regulation in heart failure. So a com-
prehensive understanding of the PVN will enhance our
ability to treat the HF condition and its cardiovascular
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complications, and help in reducing the deleterious ef-
fects of chronic sympathoexcitation in this disease state.
Based on evidence from other laboratories and our

laboratory, this review highlights some important mecha-
nisms in the PVN that may contribute to the exaggerated
sympathetic outflow and the neurohumoral excitation
commonly observed in HF.

Renin-angiotensin system in heart failure
Heart failure is a consummate example of multisys-
tem disorder and is characterized by neurohumoral
excitation. The consequences of NHE include in-
creased sympathetic activity, enhanced renal sodium
and water reabsorption, and decreased renal perfusion
resulting in the activation of a number of peptides in-
cluding those components of the renin-angiotensin
system (RAS). The RAS is activated in HF and leads
to vasoconstriction, volume accumulation and exag-
gerated sympathetic nerve activity. The RAS has been
implicated in the central processing of sympathetic
nerve activity [9-12]. Recent studies demonstrated
that RAS is activated in the PVN of heart failure rats
and increased ANG II causes PVN neuronal activa-
tion [13-16]. ANG II had been shown as a significant
factor in the central regulation of arterial blood pres-
sure (BP), which could bind to AT1-R cross the weak
or absent blood–brain barrier and subsequently acti-
vate the brain RAS. The permissive role of ANG II
on sympathoadrenal activation is mediated by the
same AT1-R which mediates the central effects of
ANG II. Because the AT1-R is thought to be the pri-
mary receptor involved in most of the biological
effects of ANG II, the degree and mechanism by
which is expressed may provide important insight into
the sympathoexcitatory process and the development
of novel centrally acting therapeutic agents. Previous
studies have demonstrated that AT1-R is present in
the PVN [15,17] and mRNA levels for the AT1 receptor
are high in the PVN. Blockade of RAS components
modulates PVN neurotransmitters and decreases
sympathetic activity, indicating a role for the central
nervous system RAS in sympathoexcitation in HF
[13,18]. Findings from our laboratory and others indi-
cate that cytokines interact with RAS both in the
central and peripheral nervous systems [13,19-21].
Brain AT1-R may influence sympathetic activity by
regulating the release of pro-inflammatory cytokines
into the circulation. Cytokine blockade decreases cir-
culating ANG II levels, conversely, RAS blockade at-
tenuates circulating cytokine levels [22-24]. Therefore,
it is plausible to suggest that an interaction between
cytokine and AT1-R within the PVN might modulate
neurotransmitters and contribute to sympathoexcita-
tion in HF.
Proinflammatory cytokines in the PVN in heart failure
A growing body of evidence suggests that heart failure is
related with neurohumoral excitation as well as immune
abnormal. The products of immune activation are the
proinflammatory cytokines (PICs). These PICs include
tumor necrosis factor-alpha (TNF-α), interleukin-1β
(IL-1β) and IL-6, which are released into the circulation
early after myocardial infarction (MI). Although several
PICs are up-regulated in HF, we have focused on TNF-α,
which appears early in the cytokine cascade [25], since it
is generally the first cytokine that is up-regulated in dis-
eases, and it also induces the production of several other
cytokines. Findings from Felder’s laboratory suggest that
TNF-α increases in the blood, brain and heart within
minutes after acute MI and continues to rise over the
ensuing weeks, and IL-1β has a similar pattern of early
appearance after MI [26]. Chronic treatment with
pentoxifylline (anti-inflammatory/anti-cytokine) inhibits
PICs synthesis [27-30] and prevents the increases in
TNF-α in brain, heart and plasma measured 4 weeks
after MI [26]. The PVN is particularly sensitive to the in-
fluences of inflammatory stress. Injection of TNF-α into
the PVN increased sympathetic activity, suggesting a dir-
ect role of TNF-α in sympathetic activity. Systemic
TNF-α increases the activity of PVN neurons and con-
tributes to increased sympathetic activity, chronic infu-
sion of PICs synthesis blocker decreased sympathetic
activity in HF rats [26,31,32]. There are two possible
mechanisms for TNF-α increased expression in the
PVN: (1) circulating TNF-α into the brain through the
circumventricular organs (CVOs) which are specialized
brain regions that lack a blood–brain barrier; (2) acti-
vated microglia in the brain can synthesize TNF-α.
Blood-borne cytokines act upon receptors in the micro-
vasculature of the brain to induce COX-2 activity and
the production of prostaglandin E2, which penetrates the
blood–brain barrier to activate the sympathetic nervous
system [33]. Increased TNF-α in autonomic regulatory
regions of the brain alters the production of superoxide
and nitric oxide, contributing to fluid imbalance and
sympathoexcitation in heart failure [34]. This is also sup-
ported by our findings that PVN infusion of a TNF-α
blocker pentoxifylline (PTX) or etanercept (ETN) atten-
uates the increase in renal sympathetic nerve activity
(RSNA), decreases AT1-R expression and modulates
neurotransmitters thereby attenuating sympathoexcita-
tion in HF rats [35].

Neurotransmitters in the PVN in heart failure
A number of excitatory and inhibitory neurotransmitters
converge in the PVN to influence its neuronal activity [5].
Among these neurotransmitters are glutamate, norepin-
ephrine (NE), and gamma-amino butyric acid (GABA).
Glutamate is a well-known excitatory neurotransmitter in
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the CNS. It has been reported that functional glutamate
receptors are expressed in the PVN [36-39] and are in-
volved in cardiovascular reflexes [40,41]. It has been
shown that sympathetic hyperactivity in HF rats is associ-
ated with increased extracellular NE in the PVN [42,43].
NE plays a critical role in the pathophysiology of HF
[44,45]. GABA is a well-known inhibitory neurotransmit-
ter in the CNS. A large body of evidence suggests that
GABA plays an important role in central sympathetic and
cardiovascular regulation [46,47], which is a dominant in-
hibitory neurotransmitter within the PVN. Consider-
able evidence suggests that the PVN is one of the
sites in which the cardiovascular effects of GABA are
elicited. Studies from Patel’s laboratory demonstrate
that inhibitory mechanisms of sympathetic regulation
within the PVN via GABA were reduced in HF rats
[48]. The alterations seen in HF may induce an im-
balance between the inhibitory and excitatory neuro-
transmitters in the PVN and influence sympathetic
outflow [49,50]. PICs were increased in the PVN of
HF rats and increased PICs in the PVN cause an im-
balance in PVN neurotransmitters and contribute to
sympathoexcitation in heart failure [21,35]. Rats with
HF or sham-operated control (SHAM) rats were
treated for 4 weeks with a continuous intracerebro-
ventricular (ICV) infusion of the TNF-α blockers
PTX, ETN or vehicle. HF rats had increased neuronal
excitation accompanied by higher levels of glutamate,
NE, and tyrosine hydroxylase (TH), and lower levels
of GABA and 67-kDa isoform of glutamate decarb-
oxylase (GAD67) in the PVN when compared with
SHAM rats. Renal sympathetic nerve activity (RSNA)
was also increased in HF rats. After the ICV treat-
ment with low doses of PTX or ETN attenuated, and
high doses prevented, increases in levels of glutamate,
NE, and TH, and decreases in levels of GABA and
GAD67 in the PVN of HF rats. These studies from
our laboratory clearly indicate that the effects of PICs
on the exaggerated sympathetic activity in HF via
modulating neurotransmitters in the PVN.

Reactive oxygen species in the PVN in heart failure
Although there are differences in sympathetic outflow
to various vascular beds in the HF state, it is generally well
accepted that sympathoexcitation is a global phenomenon
[51]. Furthermore, HF has been viewed as a proinflamma-
tory state as well as a condition characterized by high levels
of oxidative stress [52-54]. In patients and animals with
HF, increased oxidative stress has been shown to occur in
many tissues, including the heart and brain [55-59]. The
NAD(P)H oxidase is a multi-subunit enzyme that catalyzes
the reduction of molecular oxygen to form superoxide
O2

•ˉ. NAD(P)H oxidase function appears to be required
for processes such as neuronal signaling and central
cardiovascular homeostasis, but overproduction of reactive
oxygen species (ROS) contributes to neurodegeneration
and cardiovascular diseases [60]. TNF-α can induce activa-
tion of NAD(P)H oxidase leading to enhance oxidative
stress [61] and mediate NAD(P)H oxidase-derived super-
oxide production during heart failure [60]. Furthermore,
overproduction of ROS within brain cardiovascular regions
such as the PVN induced the overexpression of several
NAD(P)H oxidase subunits including NOX-2 and NOX-4
[62]. Under pathological conditions, the excess O2

•ˉ in the
brain made the disequilibrium of oxidation and antioxida-
tion resulting in augmented the sympathoexcitaion in heart
failure.
However, studies from our laboratory indicate that the

treatment with tempol (a superoxide scavenger) not only
decreased sympathetic activity, but also eliminated the
redundant O2

•ˉ, restored the balance between oxidation
and antioxidation, decreased the expression of RAS
component AT1-R, and ameliorated heart failure [20].

Nuclear factor-kappa B in the PVN in heart failure
The neurohumoral mechanisms and immune-mediated
mechanisms have been shown to play important roles in
the pathophysiology of HF, and excess PICs [14] and
RAS [63] are both present in the cerebrum cardiovascu-
lar region and contribute to neurohumoral excitation in
HF.
Nuclear factor-kappa B (NF-κB) is present in central

nervous system (CNS) neurons and plays an important
role in inflammatory response, and is a potent inducer
of PICs and oxidative stress contributes to the patho-
physiology of multiple disease states [64]. The activated
NF-κB pathway has been shown to be the major regula-
tor facilitating the synthesis of several different injury-
responsive cytokines in neurons, such as TNF-α, IL1-β,
IL-6 [65-67]. AT1-R is the important product mediated
by cytoplasmic NF-κB [67]. Translocation of activated
NF-κB to nuclei regulates the synthesis of AT1-R in
neurons [68]. Furthermore, NF-κB can mediate the
cross-talk between RAS and PICs in the PVN in HF
[20]. In the PVN, the activated NF-κB also contributes
to NAD(P)H oxidase-dependent oxidative stress and
sympathoexcitation in HF rats [69,70]. In return, NF-κB
is up-regulated along with PICs activation in the PVN
of ischemia-induced heart failure rats [71]. RAS and
superoxide activate NF-κB in the PVN and contribute
to neurohumoral excitation [71-73]. In addition, oxida-
tive stress mediates the up-regulation of brain renin-
angiotensin system (RAS) in ischemia-induced heart
failure [71].
Previous work demonstrated a GABA-mediated inhibi-

tory mechanism in the PVN contributing to sym-
pathoexcitation in HF rats [70]. Moreover, in HF,
endogenous GABA-mediated inhibition is decreased,
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due to the increased neuronal activity of the PVN. PVN
infusion of AT1-R blocker losartan or pyrrolidine dithio-
carbamate (PDTC, a specific NF-κB inhibitor) attenuated
the decreases in GABA, and the increases in gp91phox (a
subunit of NAD(P)H oxidase), NF-κB activity, glutamate
and NE, in the PVN of HF rats, and also attenuated the
increases in RSNA and plasma PICs and NE. Based on
these studies, it is clear that interaction between AT1-R
and NF-κB in the PVN contributes to oxidative stress and
sympathoexcitation by modulating imbalance between ex-
citatory and inhibitory neurotransmitters in the PVN of
HF rats [74]. PVN infusion of SN50 (a competitive inhibi-
tor of the translocation of NF-κB to the nucleus) pre-
vented the decreases in PVN GABA and GAD67, and the
increases in RSNA and PVN glutamate, NE, TH, super-
oxide, gp91phox, phosphorylated IKKβ and NF-κB p65
activity observed in heart failure rats. These findings sug-
gest that the activated NF-κB contributes to sympathoex-
citation in rats with ischemia-induced heart failure [63].
Figure 1 provides a schematic overview and summarizes
the relationship of PICs, ROS, RAS and NF-κB in the
PVN, which modulate sympathetic activity in heart failure.

Conclusion
Neurohumoral excitation has been recognized as one of
the hallmarks during the development of heart failure
MI
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Figure 1 The interaction among RAS, PICs, ROS, NF-κB and neurotran
heart failure.
(HF), a large number of factors such as ANG II, PICs,
ROS and NF-κB signaling are activated and cause an
imbalance in PVN neurotransmitters and contribute to
sympathoexcitation in heart failure. The precise mecha-
nisms by which these factors become sensitized in HF
are needed to be explored. Several possibilities, including
indirect effects mediated by PICs, NAD(P)H oxidase-
dependent generation of superoxide and/or up-regulation
of the brain RAS, and possibly even direct effects medi-
ated by NF-κB signalling pathways. A clear indication of
this phenomenon is illustrated in Figure 1. In the PVN,
NF-κB activation seems to play an important role in sym-
pathoexcitation in HF. Interaction among PICs, ROS,
RAS and NF-κB in the PVN modulates sympathetic nerve
activity. Targeting NF-κB modulation and its downstream
regulatory molecules in the PVN provides a roadmap for
tackling possible therapeutic strategies to the improve-
ment of central neural control of sympathetic nerve activ-
ity in HF. We conclude that increased brain PICs in HF,
either directly, or via an interaction with RAS, ROS and
NF-κB, cause an imbalance between excitatory and inhibi-
tory neurotransmitters in the PVN, thereby contributing
to sympathoexcitation.
The review provided here clearly indicate the great po-

tential for development of future therapies involving tar-
gets within the RAS, ROS, PICs, neurotransmitter and
PVN
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smitters in the PVN contributes to sympathoexcitation in
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NF-κB. Further studies are needed to elucidate the sig-
nificance of these mechanisms that may contribute but
are not yet appreciated. And the functional neurons for
the sympathoexcitation in the PVN in heart failure, such
as the microglia, are needed to be investigated in the fur-
ther studies.
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