
Liu et al. Regenerative Medicine Research 2013, 1:9
http://www.regenmedres.com/content/1/1/9
REVIEW Open Access
Endothelial progenitor cells in cardiovascular
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Abstract

Regenerative medicine techniques to recover cardiac and vascular function are being increasingly investigated as
management strategies for cardiovascular diseases. Circulating endothelial progenitor cells (EPCs) derived from
bone marrow are immature cells capable of differentiating into mature endothelial cells and play a role in vascular
reparative processes and neoangiogenesis. The potency of EPCs for cardiovascular regeneration has been
demonstrated in many preclinical studies and therapeutic utility of EPCs has been evaluated in early-phase clinical
trials. However, the regenerative activity and efficiency of the differentiation of EPCs are still limited, and a directed
differentiation method for EPCs cells has not been fully demonstrated. In this review, we introduce the role of
circulating EPCs as biomarkers of cardiovascular diseases and medical applications of EPCs for cardiovascular
regeneration.
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Introduction
Circulating endothelial progenitor cells (EPCs) are bone
marrow derived peripheral blood mononuclear cells that
have the capacity to proliferate, migrate, and differenti-
ate into mature endothelial cells (ECs) [1]. EPCs were
first discovered in human peripheral blood [2] and were
shown to incorporate into sites of physiological or
pathological neovascularization [3-5]. The discovery of
EPCs has greatly enhanced our understanding of blood
vessel formation. Accumulated evidence has elucidated
that EPCs provide a postnatal vasculogenesis mechanism
for neovascularization and vascular remodeling [6,7].
EPCs have a diverse of physiological functions and par-
ticipate in the recovery processes of myocardial ischemia
and infarction [8], limb ischemia [9], wound healing
[10,11], atherosclerosis [12], endogenous endothelial re-
pair [13], and tumor vascularization [14]. Clinical trials
have demonstrated that EPC therapy is safe and feasible
for the treatment of cardiovascular diseases. In addition,
circulating EPCs levels are considered as biomarkers for
coronary and peripheral artery disease. However, despite
significant steps toward defining their potential for both
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diagnostic and therapeutic purposes, further progress
has been mired by unresolved questions regarding the
definition and the mechanism of action of EPCs. This
review will highlight the potential value of EPCs as the
biomarkers and a potential therapeutic method for car-
diovascular diseases.
Review
Endothelial progenitor cells (EPCs)
Adult bone marrow (BM) is a rich reservoir of tissue-
specific stem and progenitor cells and EPCs constitutes
1–5 percent of the total bone marrow cells [15]. Based
on the originated status, circulating EPCs can be subdi-
vided into two main categories, hematopoietic lineage
EPCs (HEPCs) and nonhematopoietic lineage EPCs
(NHEPCs). The HEPCs originate from BM and identifi-
cation of HEPCs is associated with the methods and
markers of hematopoietic stem cells (HSCs) [16]. Never-
theless, it is still difficult to clearly distinguish between
EPCs and HSCs for lacking of specific and selective
markers for primary EPCs. The NHEPCs are isolated
from blood or tissue samples but not BM cells, which
can be successive cultured and distinguished by their
rather obvious endothelial cell phenotype [17,18]. The
origin of NHEPCs remains to be clarified, but they are
generally thought to be derived from nonhematopoietic
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tissue-prone lineage stem cells or organ blood vessels
but not like the HSCs [19]. EPCs are multiple cell types
capable of differentiating into the endothelial lineage but
not a single cell type [14]. The cells differentiated from
EPCs possess the characteristic of mature ECs, including
expressions of CD31+, E-selectin+, endothelial nitric
oxide synthase (eNOS)+, and uptake of acetylated low
density lipoprotein [20]. However, it is difficult to define
EPCs precisely because of a lack of consensus regarding
the best EPC source, the optimal isolation and culture
techniques, and the phenotypes and characteristics that
are especially crucial for EPC identity.
In 1997 Asahara and colleagues published a landmark

paper in Science [2], showing that EPCs in adult human
peripheral blood were CD34+/VEGFR-2+ (vascular en-
dothelial growth factor receptor 2) mononuclear cells. Sub-
sequent studies confirmed that CD34+ cells from bone
marrow or umbilical cord blood also had the capacity to
differentiate into mature ECs in vitro and in vivo in mouse
models [4,21], thereby contributing to neoendothelializa-
tion and neovascularization in the adult organism. How-
ever, both CD34 and VEGFR-2 are expressed on mature
ECs. Thus, better markers are needed. The stem cell
marker CD133 (AC133) may be a more precise marker for
defining EPCs, because CD133 is not expressed on mature
endothelial cells [14]. However, CD133 expression declines
as differentiation progresses, whereas CD34 expression is
maintained, and the expression of endothelial markers (e.g.,
VEGF-2, von Willebrand factor [vWF], eNOS) increases
[22]. Consequently, marker expression has been used to
distinguish between early EPCs (e.g., CD133+/CD34+ cells),
early and late circulating EPCs (e.g., CD133-/CD34+ cells),
and EPCs that are nearing maturity (e.g., vWF+ cells).
EPCs locating to damaged tissues and organs proceeding

vascular regeneration do not only participate in the for-
mation of the neovasculature but also produce a variety
of proangiogenic cytokines and growth factors, promot-
ing proliferation and migration of pre-existing ECs,
activating angiogenesis to contribute to vascular regen-
eration [23,24]. This paracrine aspect of EPC activity
was reflected by the presence of various cytokines and
other secreting pro-angiogenic factors in EPCs such as
VEGF, stroma derived factor (SDF)-1α, angiopoietin-1
(Ang-1), hepatic growth factor (HGF), insulin-like
growth factor (IGF)-1, and eNOS/iNOS (inducible nitric
oxide synthase) [25-27]. Therefore, EPCs can mediate
tissue-protective effects and contribute to neovasculari-
zation via direct vasculogenesis in ischemic tissues and
indirect production of proangiogenic factors to pre-
existing ECs.

EPCs as potential biomarkers of cardiovascular diseases
Reduced numbers and impaired functionality of EPCs
have been found in several clinical conditions such as
diabetes mellitus [28,29], hypertension [30-32], heart
failure [33] and chronic kidney disease [34-36]. It has
been shown that the peripheral EPC number is reduced
while EPC function is impaired and the numbers of
circulating EPCs are significantly reduced in patients with
established coronary artery disease [37] and stroke [38].
However, the number of EPCs is increased in patients with
an acute coronary syndrome, such as acute myocardial in-
farction [39] or unstable angina [40,41], because they are
mobilized from the bone marrow into the bloodstream.
Importantly, the level of circulating CD34+/VEGFR-2+

EPCs further decline in the later stages of atherosclerosis
in different districts, such as coronary [42-44], carotid and
cerebral [45,46], and peripheral atherosclerosis [37,47].
Correlations were also found between severity of the ath-
erosclerotic burden and EPC levels, [38,46] indicating that
low EPCs represent a biomarker of the systemic athero-
sclerotic involvement.
It has been shown that hypertension patients with cor-

onary artery disease have reduced levels and migratory
capacity of EPCs [48]. Moreover, the concentration of
circulating EPCs is significantly reduced in refractory
hypertension as compared to healthy subjects [49]. Ima-
nishi et al. has reported that EPC senescence is accelerated
in both experimental hypertensive rats and patients with
essential hypertension, which may be related to telomerase
inactivation [32,50]. They found the hypertension-induced
EPC senescence might affect the process of vascular re-
modeling [50]. Thereafter, Delva et al. reported no alter-
ation in the number or functional activity of EPCs in 36
patients with essential hypertension [51]. With regard to
pulmonary hypertension, some studies have shown there
is a decrease in the levels of EPC [52-54], while others
report that normal levels of EPC or an increase in EPC
number [55,56]. Therefore, at present, there is no evidence
of a clear independent relationship between hypertension
and the number of circulating EPCs [57].
Valgimigli et al. tested EPC levels in patients with

heart failure (HF), and they found that EPC mobilization
occurred in HF and showed a biphasic response, with
elevation and depression in the early and advanced
phases, respectively [58]. The increased EPCs had been
shown as a reflection of a functional bone marrow
response to diffuse and severe endothelial damage during
the early stages of HF, but an additional and significant
increase of tumor necrosis factor (TNF-α) counteracted
and overwhelmed the elevation of EPC mobilization in
advanced disease phases by exerting a possible suppressive
effect on hemopoiesis [59]. In contrast, another study
showed that EPC levels were probably not influenced by
the aetiology of HF, but rather correlated with the patient’s
clinical status [60]. A recent report has shown that HF
patients with both preserved ejection fraction and reduced
ejection fraction have significantly decreased circulating
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EPC levels, enhanced systemic inflammation, and higher
N-terminal pro-brain natriuretic peptide levels compared
to controls [61].
Although the studies of EPCs as the biomarkers in

cardiovascular diseases have not generated a conclusive
result, these cells have widened the spectrum of cellular
biomarkers and have supported the concept that circu-
lating EPCs may affect the cardiovascular system.

EPCs as a therapeutic agent
Besides as potential cardiovascular risk biomarkers,
EPCs have been extensively studied for their patho-
physiological and therapeutic implications in cardiovas-
cular diseases. However, several obstacles exist before
large scale use of EPCs. For instance, the relatively rare
cells must be expanded in sufficient numbers from per-
ipheral blood, and possible changes in phenotype may
increase the risk of cell senescence after in vitro enumer-
ation of progenitor cells. Increasing the number and/or
improving the function of EPCs may be promising in the
treatment of atherosclerotic disease, ischemia or HF.
Myocardial ischemia caused by coronary artery disease

can be attenuated by the development of collateral circu-
lation; following the role of EPCs in neovascularization
was recognized, investigators have begun to evaluate the
potential therapeutic impact of EPCs. It has been shown
that recovery of blood flow was greater in mice with
hindlimb ischemia treated with EPCs than in control
mice and in mice that received mature ECs, and that
histological examinations confirmed EPC incorporation
and differentiation into ECs [9]. Kawamoto and co-
workers [8] evaluated EPC therapy in nude rats after
acute myocardial infarction. These investigators found
that intravenous administration of ex vivo expanded
human EPCs could inhibit myocardial fibrosis and was
able to preserve myocardial function. In addition,
chronic treatment with bone marrow derived progenitor
cells from young non-atherosclerotic apolipoprotein
E knock-out (ApoE−/−) mice prevents atherosclerosis from
progression in ApoE−/− recipients [62]. In contrast, treat-
ment with bone marrow cells from older ApoE−/− mice
with atherosclerosis is much less effective. These results
suggest that ApoE gene deficiency may not affect EPC
repairing efficiency but that the chronic stimulation of
EPCs in older ApoE−/− mice significantly weakens EPC
repairing function. In addition, it has been demonstrated
that EPC therapy improves regional systolic function
accompanied by cardiac hypertrophy in porcine acute
myocardial infarction models. The effect of EPCs on
cardiac hypertrophy is mediated by paracrine secretion of
cardiotrophic factors including TGFβ1 [63].
Several small-scale clinical trials have been performed

to evaluate the use of bone marrow cell transplantation
in treatment of cardiovascular diseases. However, the
available clinical studies with respect to administration
of circulating progenitor cells in cardiovascular diseases
are mainly about CD34+ cells [64,65]; only a few studies
suggest the role of CD34+/CD133+ cells in cardiovascu-
lar diseases. Intracoronary infusion of CD133+ cells after
acute myocardial infarction led to an improvement of
left ventricular ejection fraction [66]. 167 patients with
refractory angina received intramyocardial injections of
mobilized, autologous CD34+ cells resulted in a signifi-
cant improvement in angina frequency and a significant
improvement in exercise response [64]. Another study
suggests that injection of CD133+ cells into the myocar-
dial border zone improves left ventricular function
[67,68]. In patients with dilated cardiomyopathy, admin-
istration of autologously transplanted CD34+ cells led to
an improvement of left ventricular ejection fraction [65].
Data collected from in vivo and in vitro experiments
suggest that blockade of C-X-C chemokine receptor type
4 is sufficient to mobilize EPCs and to increase re-
cruitment of EPCs to the neovasculature [69]. There is
growing number of studies regarding EPC therapy in
cardiovascular diseases, however, this therapeutic inter-
vention in human remains to be further validated.
Although the preclinical and clinical studies reviewed

here generally give strong support to the therapeutic
potential of EPCs in the treatment of cardiovascular
diseases, the clinical application of EPCs is limited by
several factors. At first, the relatively shortage of circulat-
ing EPCs makes it difficulty to expand sufficient number
of cells for therapeutic application without inducing the
risk of cell senescence and change in phenotype [2,70].
Furthermore, the number and availability of EPCs are sen-
sitive to some pathologic state, such as aging and diabetes
which are always accompanied by cardiovascular diseases
[29,71,72], this severely restricts the ability of autologous
EPCs to treat patients with cardiovascular diseases. Finally,
for a successful therapeutic EPC-based approach, it is
essential to get optimal quality/quantity of EPCs, such as
ameliorating EPC purification and expansion methods,
improving the administration and cellular application
techniques, and recovering the disease-based dysfunction
and/or senescence of patient-derived EPCs.

Conclusions
The involvement of EPCs in postnatal vasculogenesis
and endothelial repair is supported by growing preclin-
ical evidence. EPCs also participate in arteriogenesis in
cardiovascular diseases. The mechanisms by which EPC-
mediated vessel growth and repair in cardiovascular dis-
eases are not fully understood, the vasculogenic effects
are thought to be attributed to the variety of angiogenic
factors produced by EPCs. EPC-based therapy is still in
very early stage, as critical questions regarding EPC sur-
vival, timing of administration, and phase- or activity-
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dependent efficacy of the diseases need to be addressed.
The regenerative potency of EPCs will continuously be
evaluated by ongoing, randomized, controlled clinical trials.
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